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V. On the Theory of Free Stream Lines.
By J. H. M1crELL, Trinsty College, Combridge.
Communicated by Professor J. J. TraomsoN, F.R.S.

Received January 3,—Read January 16, 1890.

Introduction.

THE attention of mathematicians was first called to the subject of the present paper
by a memoir of HELMHOLTZ'S in 1868, on “ Discontinuous Fluid Motion.”*

In discussing the steady motion of liquids past salient edges of fixed obstacles, it
is found that the assumption of continuity of the motion leads to negative pressures
m the liquid. HrrLmBoLTZ showed, in the paper above-mentioned, that some cases of
this kind could be solved by assuming a surface of discontinuity, on one side of which
the liquid is at rest, and he gave a mathematical solution of one case where the motion
is in two dimensions.

The next advance in the subject was made by KircHHOFF who, in 1869, in a paper
entitled “ Zur Theorie freier Fliissigkeitsstrahlen” in ¢ CRELLE'S Journal, gave a
generalization of the method which HeErLmMBOLTZ had used, and obtained thereby the
solution of three new interesting cases. Subsequently in his ‘Vorlesungen iiber
mathematische Physik,” he published another method and worked out the same
problems by means of it, but gave no new ones.

RavieicH in the ¢ Philosophical Magazine,” December, 1876, discussed the solutions
of KircHHOFF, and gave a drawing of the bounding free stream lines in one case.

As far as I know, these are the only investigations published on the mathematical
side respecting a branch of hydrodynamics of great theoretical and practical interest.

In considering the method of transformation of polygons given independently by
ScawARrz and CHRISTOFFEL I have been led to a new transformation, which together
with theirs, gives a general solution of the problem of free non-reentrant stream lines
with plane rigid boundaries.

A considerable number of the cases of high interest prove to be of a tolerably
simple nature, and I have worked out several in detail. .

* These problems occupy the first part of the paper. In the second part I have given
some extensions of the transformation formulse, which are applicable to problems of
condensers and the form of hollow vortices in certain cases. ’

* ¢ Berlin Monatsberichte,” 1868 ; and ‘ Gesamm. Abhandl.,” vol. 1.
28.6.90
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390 MR. J. H. MICHELL ON THE THEORY OF FREE STREAM LINES.

The general Theory of Transformation.

Let @, ¥ be two conjugate functions with respect to the two variables ¢, ¥, so that

@ 4y = f (¢ + W),
x4y =z x—1y =7,
b+ w=w p—p=w"

x, y may be regarded as the rectangular coordinate of a point in a plane which we
shall call the z plane, and similarly ¢, ¢ are the coordinates of a pomt in the w plane.
Consider the functions

and write

dz dz

V=logo . 05
/dz
W_—zlogd | awr

Since they can be written in the form

/

dz dz
V= log%—l- log&?,
. dz de’
W=-— 'L[log% — logwil )
they both satisfy LAPLACE'S equation, and we have
V+iW = 2log =
+ W =2log dw’

so that 'V, W are conjugate functions with respect to x, y or ¢, .

The transformations of the present paper will be deduced from the properties of the
function V, so that its nature must be considered in detail. We have as alternative
forms of V

V=t = e {(a) + (o) 1=~ )+ ()T

*

If the element of arc of ¢ constant in the z plane be given by

d
sy = 7? ’
then
s (9¢ b\
= () + ()
so that
V = - log I*.
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MR. J. H. MICHELL ON THE THEORY OF FREE STREAM LINES. 391
And
dz . dy
— + R
oo T A,
zW—logdﬁ 'dy__,ﬁ,
i$ ~ " ag

where 6 is the angle the tangent to the curve ¥ makes with the axis of .

[Mr. BriLs has used the function W as a means of transformation (¢ Cambridge Phil.
Soc. Proc.,” vol. 6, and ¢ Messenger of Math.,” August, 1889), and has thus anticipated
me in cne of the general theorems given in the latter part of this paper as I shall
notice in the proper place. I was not acquainted with his work when I developed the
method here given. ]

Let % be the curvature of the curve ¥ at ¢. We have the well-known formula

which is
=V (Y

Now let the arc of the curve ¢ be connected with £ by the equation

s =f(7c)

so that
ds d
s = ag’ )
“or from (1)
v 9@ - :
e"—d¢ <d«p6 *">. Coe e oL (2)

If 3 consist of parts of straight lines we have simply
—=0. . . . . . . . . . . . (3

The formula (2) suggests a general method for finding a transformation

e=f (b + ),

such that iy, is an arbitrary curve in the z plane.

If the region within v, corresponds, point for point, to the part of the  plane lying
above Y = i, the problem is reduced to finding a potential function V, which is
continuous throughout the space bounded by a straight line, and such that

wv_ 4 A d -%v>
=gt <d\[/ ¢
over that straight line
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392 MR. J. H. MICHELL ON THE THEORY OF FREE STREAM LINES.

We have still to discuss the question of the singular points of V.

The function V will be finite and continuous for all points except where two
branches of a s curve (or a ¢ curve) cut.

At such a point dz/dw is either zero or infinite, and in either case V is infinite.

It will be sufficient for our purpose to consider only the simplest singularity, that
is, in which we have in the neighbourhood of a point (¢, ys,) of this nature
| V= nlog [($ — )" & (6 = ]+ C,

and therefore

where the value of # will depend on the nature of the singularity in question, and
will be seen from the particular problems to which we proceed.

Prosrem 1.

To find the transformation z = f(¢ + @), which makes the area for which ¥ is
positive in the w plane correspond point for point to the area inside a given rectilinear
polygon in the z plane. (The problem of ScaEwARz* and CHRISTOFFEL'.)

Consider the conditions which the function V must satisfy in the o plane.

(a) There are to be no singular points for ¥ positive.

(b) Along ¥ = 0 we have dV/dys = 0.

(c¢) At certain points of ¥ = 0, which correspond to the angular points of the
polygon in the z plane, we have V infinite.

It is plain from this specification that the function V is (to a constant) merely the
potential of masses at the singular points ¢;, ¢, . . . along ¥y = 0 ; and, therefore,

V=logIl { (¢ — ¢)* + ¢’} + C,
so that
dz A
& — 1A (i — ¢)
where II is the product symbol. ,
It remains to find the quantities n,, Draw a small semicircle of radius R around

the point ¢,,

* «TUeber einige Abbildungsaufgaben ” (‘ CreLLE,” vol. 70, 1869).
+ ¢ Sul problema delle temperature stazionarie,” &e. (¢ Annali di Matematica,” vol. 1, 1867).
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MR. J. H. MICHELL ON THE THEORY OF FREE STREAM LINES. 393

and on this semicircle let,
w — ¢, = R (cos 0 + 7sin 0),

so that

e AR (cos n, 6 + i sin n,0).

dw
Consequently, as we pass from 0 = 7 to § = 0, dz/dw goes from

AR* (cos n,mr + ¢ sin nr)

to
AR,

The amplitude of dz/dw has, therefore, decreased by n,.

But the increase of amplitude is # — @, where a, is the internal angle of the
polygon which corresponds to ¢,.

Therefore,

or

so that the transformation becomes

dz arjr — 1
= ATl (w — ¢,) ,

which is the formula given by ScawARrz and CHRISTOFFEL.

ProBrLem I.—Sprcrarn CAsk.

For the study of non-reentrant free stream lines we require a special case of this
formula.

Suppose the polygon to consist of a series of straight line sinfinite in one direction,
all parallel to y = 0, so that the angles of the polygon are either 0 or 2w, and, there-
fore, n, = <4 1 or — 1.

Let ¢,, correspond to an angle 2, and, therefore, to an end of a line within a finite
distance of the origin, and let ¢;. correspond to an angle 0, and, therefore, to the
adjacent ends of two lines at an infinite distance from the origin.

ScEWARZ'S formula then becomes

P gAY O
dw w — ¢,

MDCOCXC.—A, ' 3 E
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394 MR. J. H. MICHELL ON THE THEORY OF FREE STREAM LINES.

It is plain that there cannot be more than one factor more in the numerator than
in the denominator, so that we can write

dz TR O ,

and, therefore, on infeegrating
z=%Aw* 4+ Bw -+ D + =C, log (w — ¢,,),

we may at once determine the distances between consecutive lines in terms of the ¢,
or in terms of the D,.

For consider the passage of w around the small semicircle R above described.
-We have ‘
‘ w — ¢, = Re”,

therefore
C,
b= o d ()
= 4C, j de,
= — 17C,.

So that y increases by — #C, in passing the point ¢, and, therefore, the distance
between the parallel lines 7 and » + 1 is — #C,, or, in terms of the ¢,, is

= iy

- — A ?
T, = b,

After we have fixed on the angle which is to correspond to ¢ = 4o, we can in
general choose the position of two other points ¢,, ¢,, and then the transformation-
formula is determined to an additive constant. ' v

For example, take the case of two doubly infinite lines AB, CD, with a semi-
infinite line EF between them.

c D
K ¥
A B

We may take the zero angle (A, C) to be ¢ = + o, and the angles (B, IF) (F, D)
tobe p = — 1, ¢ =+ 1. Then if the angle E is ¢ = ¢, we have

dz A(w—c)
dw = (w — D) (w+ 1)
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MR. J. H. MICHELL ON THE THEORY OF FREE STREAM LINES. 395

Let the distance between AB and EF be d, and that between EF and CD d,.
Then integrating past the points @ = — 1, 0 = 1, we find

.
AL=0),

A(l+20
ks 2__ )

d, = —
dy= —

which determine A and ¢, and, therefore, make the formula definite.
Other examples will occur in the physical application.

Prosrem II.

The second transformation which we need may be stated most simply as an
electrical problem.

Let there be any number of infinitely long plane conductors, all in the same plane,
and with parallel edges.

It is required to find the potential at any point when these conductors are raised to
given potentials.

A B C D E F

Let AB, CD, EF, . . . be the sections of the conductors by the plane (xy).

Everything is symmetrical with regard to the line ABF which we take to be
y = 0. ’ :

Consider the specifications of the transformation-function V where s is the potential
and ¢ are the lines of force.

We must have dV/dy = 0 over the conductors, since they are straight, and, there-
fore, also dV/dy = 0.

There will be infinite points at the edges A, B . . . of the conductors, and also at
points in the field corresponding to branch points of ¢ (or ¢). These last will be
distributed symmetrically with respect to y = 0.

From these conditions it is plain that the solution is that V is the potential of
masses at the singular points in question, so that we may write

V=1log I {(x — 2,)* + (y — 9.)}" + C,

daz
dw

and, therefore,

= Al (z — 2,)".

It remains to find the quantities n,.
For a singular point in the field where m branches of ¥ meet we have simply

Ny = — M.
3E 2
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396 MR. J. H. MICHELL ON THE THEORY OF FREE STREAM LINES.

For an edge of the conductor we may proceed thus :—

Let

— 0
z — z, = Re”,

then

(z — #y)" == R (cos n8 + ¢ sin nd),
so that as 6 goes from — m to 4 7, (2 — z,)" goes from

R*[cos (-- nar) + % sin (— nar)|
to
R*[cos (nwr) + ¢ sin (nm)],

and, therefore, the amplitude of dz/dw increases by 2nm. Now the amplitude goes
from 0 to m, therefore, n = 4.

Hence
dw _ (& —=)™
dz ~ T (z— @)t

where 7 refers to a point in the field and s to the edge of a conductor.

If one of the conductors reduce to a line, we have two of the x, equal, say
%, = @, ., and there is a factor z — x, in the denominator, and so for any number of
line conductors.

There are many other cases for which a formula like the above applies; it is not
always necessary that the conductors should be in the same plane.

It is very easy to perceive such cases by considering whether the equation
dV/dn = 0 is satisfied over the conductors where dn is an element of a normal to a
conductor.

By combining this transformation with that of SchwARrz and CHRISTOFFEL we get
a geueral solution for the free-stream-line problem, as I shall presently show.

It is necessary first to deduce some special formulze, which will be continually used
hereafter.

(@) Take first the case of one conductor and one line—

z=—2> =0 T=a

Let the conductor extend from = — b to 2= 4 b and the line distribution
be at « = a.
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Then the general formula reduces to

dw _ Ai
dz (¢ —a) (2* — W)

where A is real, supposing that there is no singular point in the field.
The nature of the multiplier Az is obtained by considering that between

x=—bandx=1"0 ‘k

The integral of this is

az — B + \/(@® — B¥)\/(Z — b*)
' b(z—a)

w = Ailog

supposing the potential of the conductor is zero. ,

(b) Now let the conductor be two semi-infinite planes, with a gap from z = — b
to £ =0> between them, and let there be a line distribution at x = a where
b>a > —b.

Then

dz ~ (z—a) (@ — )t
where A is real.
And '
(TR VA Gt o WA Gt
b(z— a)

w = Az log

the potential of the conductor being zero.
(c) If we put z = b + 2’ in the result of («), and then make b = w0, we get for the
case of a semi-infinite conductor © = 0 to £ = — o with a line distribution at « = «,

w = Az log gz+:;f:
the potential of the conductor being 0.

These results (a), (b), (c), could of course be deduced from the known formuls for
elliptical conductors.
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398 MR. J. H. MICHELL ON THE THEORY OF FREE STREAM LINES.

On the Theory of Non-reentrant Free Stream Lines.

The presence of sharp salient edges in a moving liquid always implies surfaces of
discontinuity, but these may be closed or unclosed according to circumstances. It
would be difficult to give a rule as to the kind of motion in a given case, for an
alteration in the relative sizes of the solids concerned will totally alter the character
of the motion. ‘

As an illustration of this take the case of two parallel planes of finite breadth
placed symmetrically one behind the other in a broad stream. If the second plane be
of less than a certain width, free stream lines will proceed from the edges of the first,
and the second will be in still water.

Now suppose the second plane broadened until it cuts the stream lines from the
first plane.

The character of the motion is changed. Two vortices will appear behind the first
plane, and in addition there will be free stream lines from the edge of the second
plane. v '

No method has yet been discovered which will give solutions of cases where there
is motion on both sides of a surface of discontinuity. In the problems treated in the
present paper there is always still water on one side of a free stream line.

In the present section the motion considered is in two dimensions, the boundaries
are plane, and the free stream lines are non-reentrant.

Let «, y be the coordinates of a point in the liquid, ¢, y the potential and stream
functions respectively. The region in the w plane corresponding to moving liquid
in the z plane will be bounded by straight lines ¢, infinite in one direction at least
and parallel to ¢ = 0.

The area in the w plane is therefore of the nature treated in Problem I. (o), that
is, it is bounded by a polygon whose angles are alternately four right angles and
zero.

This area, then, by means of Problem I. (@), may be transformed into the part of a
new » plane in which ¢ is positive, where © = p + 1.

In this » plane the boundaries of the liquid, both the plane boundaries and the
free stream lines, are represented by the line ¢ = 0.

Let, as before,
dz d_z d [d
v =g = = () + (G ]

We have seen that V is a potential function, considered as a function of ¢, ¥, and,
therefore, it is also a potential function considered as a function of p, q, for ¢, ¥ are
conjugate with respect to p, q. : -

Further, we have seen that along a straight boundary i = constant we have
dV/dy = 0, and, since all the straight boundaries correspond to portions of ¢ = 0, we
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must have dV/dq = 0 along all these portions. Along a free stream line the pressure
is constant, since it must be equal to the pressure on the liquid which is at rest.
Now, in steady motion, we have BERNOULLI'S pressure equation

= + 2[(d¢> -+ (6%\)2} = constant.

Therefore, along a free stream line (i) + <Zli§> i1s constant, and, therefore, V is
constant. ' |

All the portions of g = 0 which do not correspond to plane boundaries correspond
to free stream lines, for which V is constant.

Lastly < ) + <%?) is zero at reentrant angles of the boundary, and also at points

where stream lines branch.

For these points V is infinite and positive,

In all the cases we shall consider, these infinite points will be along ¢ = 0, so that
a stream line only branches at the boundary.

We have now reduced the problem to finding a function V which satisfies LAPLACE’S
equation ; is finite and continuous in that half of the plane w« for which ¢ is
positive ; is constant along parts of ¢ = 0 ; along the other parts satisties dV/d_q =0;
and at points along it is 4 oo.

This problem has an obvious solution.

It is plain that V is merely the potential due to conductors coinciding with those
parts of ¢ = 0 for which V is constant, and having that constant as potentlal togethel
with masses at the points for which V is infinite.

The general solution of this has been given in Problem II.

Let U be the conjugate of V, so that U 4 ¢V == f(p 4 ¢g). Then, translating
Problem II. into the present notation we have

4(U + V) ’LV) (uw — u, )y
d(p +1ig) (w — py)*
and for a point mass two factors of the d_enominator coincide.
‘Write this
d(U +4V)
duw _“f (u) ?
so that
U+:V= jf(u) du
Now
. dz dY
V= log dw dw'’
therefore
. dz /dz’ R
U =1log (du/ duw’
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400 MR. J. H. MICHELL ON THE THEORY OF ¥REE STREAM LINES.

and
. . dz
U 44V = Zwlog@-
Therefore

dz — iz j‘ Flu) du
= ¢ .
dw

Now we have obtained the transformation from the w to the u plane in the form

=g  [Problem L ()]
Therefore
dz _dj . cizg _ »i/?jf(u)du
du ™~ dw du_(ﬁ(u)e 2

which gives z as a function of .
This is the general solution of the hydrodynamical problem before us.
Near an angle of the boundary or a branching of a stream line we shall have

dz/du = A (u — u,)".

The determination of the index = rests on principles already used.
If the internal angle of the boundary, or the angle between the two branches of the
stream line be a, then

n=——1.
T

For example, if a stream line divide on a plane wall, n = 0, and the point of division
is not a singular point for dz/du, although it is for dz/dw. 'We may then lay down the
following rule :—

Near a singular point

where a is the internal angle of the boundary except when this point is a point
of branching of a stream line, in which case
dz

+ a
T = A (8 = )27,

for at that point
dz -
an = A (=)

and

dw/du = B (u — u,). [Problem I. (a)].

We shall now go on to consider such cases as are susceptible of tolerably simple
treatment.

We shall suppose there are only two free stream lines, and throughout take the
velocity along them to be 1, so that V = 0.
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Case 1. 4 Single Jet from a Vessel.

There will be but two bounding stream lines, which we may take to be ¢ = 0,

= m, both extending from 4 o to — .

The diagram in the w plane consists merely of two parallel infinite straight lines,
AB, CD, at a distance = apart.

C F D

A B B

A portion of each, say EB, FD, will correspond to the boundaries of the jet.

If now we transform to the w plane so that the ends D, B go to p = 4+ «, we
may choose the points w = — 1, u = 1, to correspond to the edges of the aperture
from which the jet issues. )

The point (C, A) will then be in a definite position, # = ¢, and the formula
of transformation from w to u is

dw A

du U - C

Remembering that = is the distance between the two stream lines, we see that
A = 1, and therefore
: dw 1

dw ™ w—c

Let v = a, correspond to an angle a, of the vessel, then the points along ¢ = 0 are
arranged in the manner of the figure

free stream line. rigid. rigid. free.

Y= uw=—1 V=7 u=a, u=c =0 u=1 v=0

The appropriate formula is then thatvof Problem II. (b), viz.,

% — II [:1 — % + \/(1 —ang) ,\/(]_ *%2)]1—"*:;"

dw U —-—a,

and therefore

& _ 1 H[l—%u+«/<1—-ai)«/(l—m)}l—i—‘s
4

U —

MDCCCXC.—A., ) 3 F
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Example I.—A rectangular vessel of given width has an aperture in the bottom.

Here there are only two angles, each of which = } 7, and therefore 1 — a,/7 = 4.
Let the two angles be v = o, w = b, where 1 > b >c¢>a > — 1.
Then, observing that

M—au+VIi—a V1=t =/ =) V1i+u+ Vi +a)v/1 —ul?

we get
dz 1 (Vid=a)Vitu+ViAd+a)VI—u} {(VIO=0)V1+u+V/30+0v/T—u}
du ™~ u—c¢ NV w—a. u—0)
or
d: _ Au+4+ B+ C V(11—
" (=) Viu—a). (w—0)
Where
A=vi(l—a)(1=0) = Vil +a (1 +1),
B=Vil—a)(1 =0+ Vi(l+a)(1+0),
C=vIl+a)(1=0)+ Vil —a)(140D).

Between = — 1 and u = «a, that is along the bottom of the vessel from the edge
of the aperture to the angle on the right, we have

dy
dp
doz Ap+ B+ Cy/(1 —p»

= 0,

dp = =V p—a)p—10)’

therefore the distance between the two points is

) = r Ap + B+ Cy/(1 —p)

FOVA =P g
o=V - -0
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Similarly the other piece of the bottom of the vessel is of length

[ = r Ap + B + C/(1 — pY)
T hip v —ap—b

When ¢ = — oo, that is, when v =¢
dz Ae+ B+ 0 /(1=

dw = ! Vie—a)(b—ec)
Therefore the velocity in the vessel at a distance from the aperture is

Vie—a)(b—o)
A+ B+ Cy/0 =&’

and therefore the breadth of the vessel is

Ac+ B+ Cy/(1 — &)
V(e—a)d—o

= d (say).

The breadth of the aperture is :
d—1 -1,

and the breadth of the jet is ultimately =.

The question is now reduced to a matter of the integration of 7, I,

For the general case elliptic integrals occur, and the expressions for our purpose
may as well be left in their present form. If, however, the aperture be in the centre
of the vessel, the integrals will work out, and we get a simple expression for the
contraction of the jet. To this we now proceed.

Sub-Lxample I.—Jet from an aperture in the centre of the bottom of a rectangular
vessel.

~ In this case we may take the angles of the vesselat u = — o, u=o0a, a < 1.
The expression for dz/du then reduces to

r_i 1/(1 =d® +4/0 mu’)
du~ u Vb — a?

We now have

11 1 —a® + 1 =—
lzzll_f‘yp\/(‘ f/; _\2; p)d
Now

[ —— j’ dh (x = 1)
. . 1 R l
= = [ “@v
— 1' E — iI "l
fovand al9 Sin a )

3 F 2
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and
1 \/(1 — p?) _ 7~2d71 9 R
Lp\/(lﬂ_“z)dp— _—,‘-(1—9*2)\/(1—(12-—7'2) (ZO =1 ""'r)
_ J‘ dr _ j’ dar
T lV/A=a =) I =7 4/QQ =a® —1%)
» 1 ar 7o
=|sin"!—————u == tan~! —m———
[ V3 =a) e V3 —a— 7'2)_!~/(1—-a2)
_ml—o
2 a !
therefore
g, _ml=—a /A=)~ -l
Zz_ll_2 —+ . [2‘ sin“ta |,
When « = 0 that is, at ¢ = — oo, we have
dz AWl =a)+1
= e
dw a .

Therefore the velocity in the vessel at a distance from the aperture is

[22
1+ =)

Therefore the breadth of the vessel is

—_ 2
ﬂ.li_’\/(;.ﬁ_ﬂ_) = d (say).
So that the breadth of the éperture 18
d—2l, ==+ Zsl%ﬁsin‘lw.

Hence, since the final breadth of the jet is o, we have as the ratio of the breadth
of the jet to that of the aperture

i
— 2
T+ 2 l/-gg&—a—) sin~! o
Now
1+ /1—0) d
o T’
therefore
l1-y/(Q—0)_ =
. a a4’
and
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Also .
sin"!'g = tan~! —\7(1—[_6_72—) = tan~! dﬂQidqrﬂ .
Therefore the contraction ratio is-
Ll .
(=

Now, getting rid of the special units, let d be the breadth of the vessel as before, &
the breadth of the aperture, and ¢ that of the jet, then

1/d ¢ 2de
S — Y AL WS .
k= c[l +7r<c d>tpm e 02]

If d be very large compared with £, we get

1 .. d ; ‘ 2
7c=c[1+*L1m. ~tan‘]2£:l—_"cw+ :
™ ¢ _ d

™

This is the result obtained by RavreicE®™ from KircHHOFF'S solution for the case
of an aperture in an infinite plane bounding wall.

As d/k decreases from infinity the contraction also continually decreases, until when
d = k the contraction is zero. '

In order to get some idea of how soon the finite breadth of the vessel affects the
contraction ratio perceptibly, consider the case when

B — ¢ = 2ed

d=(1++2)c

or

The contraction ratio is then

—

e

i

K
4

3 o

1 4
and »
d= 14+ /2) %k
so that the finiteness of the vessel hag very little effect on the jet if the breadth is

more than twice that of the aperture.
The equations to the free stream line ¢ == # are

de ol 1)
ap == “)p«/@ﬁ-—aﬂ)!}
dy _ _ 1 =D

dp P (PP =P J

% < Phil. Mag.,’ Dec., 1876.
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The former gives
T ‘L —=a®) . _ a
@ == — V=@ -1t
2 a P
Now

p=—et= —¢,
where s is the arc. Therefore

T = A Sy 1
o

—2 gin™ ! e,

b0l g

_I._

When ¢ = 0 we have

o
— -8
€r = B + e,
which is the form given by Ravieiea (‘ Phil. Mag.,” 1876) for KiRCHHOFF'S case.

Example I1.—Tube projecting far into the bottom of a vessel of given breadth.

The tube is supposed to project so far into the vessel that the motion at its bottom
may be neglected.

There are here two singular points only, u = — a, u = a, corresponding to the
coalescing angles of the bottom of the vessel.
The appropriate transformation is, therefore,

dw U — @ U+ a

_ AQ—M—-@(P + 24/ —a*) /(1 =u?)

w? — a?

dz A L—aw+ /(1 —a?) /(I —u?) 1+ au + (I —a?) /(1 — o)

Since, when u = o, dz/dw = — 1, we have A =1,

So that
d2 2= — '+ 2,/(1 = a®) /(1 —?)
dw w2 — a?
and
dw 1
2V — 2 as before :
du w
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therefore
dz 1 2—a—u+2/(1 —a)/(1 =)

du ~ w T a—

When u = 0, that is, at a distance upwards from the tube,

d ‘ | e
(—h—;=—-c—z§(2-—a?—2\/1 — a?).

therefore the breadth of the vessel is

ra?

S d 21— =d (say).

In passing over v = — a, « increases by

"Fg(l-—-a)

(4

therefore the breadth of the tube is

wa?’ 4qr

S ey i~ (LT @) = 5 (3¢ = 242 /(1 — o)) = k(say).

Hence

therefore

Substituting in the value of d we have

d+w_w_:L%ﬂ+V< d—k >'(l—-li)+4vr

d —k + 47 2
or

d+k—2r=,/{(d—Fk) (d—k+ 4m)}.

On squaring this gives
dk — 2mwd + 72 =0,

or, getting rid of the special unit of length, if ¢ be the breadth of the jet, we have

dk — 2¢d 4+ * =

or

(d—cP=d(d—kF).

When d is very great we get
k= 2¢,
and the ratio of contraction is 3.
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This particular case was the first solution of free stream lines given, and by
HermaoLTz.
Lord RayrLeiGH™ has given the equation

2

= +
for the coefficient of contraction when there is a tube projecting inwards in a vessel of
finite breadth. )

The assumption made is, however, not that of this example, for he has taken the
velocity along the bottom of the vessel to be the same as that at a distance upwards
from the tube.

This is one of the very few cases in which the contraction can be determined
accurately from elementary principles. '

It is scarcely worth while to put the proof of this down, but it is worth remarking
that the corresponding case in three dimensions, can also be worked out, viz., the
case of one circular cylinder projecting far into another.

Let 7, 7, be the radii of the cylinders , > r,, and »; the radius of the jet, then

F2rg? — 20,22 4 gt = 0.
This includes the case first noticed, I believe, by BorpA,t of a cylindrical tube in

an infinite plane wall, the proof being just the same.

Example I11.—Tube projecting into a vessel of great breadth.

If we take the case of a tube projecting into a vessel of great breadth, we do not
get such simple expressions.

The transformation to the u plane is the same as before, but there is now a singular

point at w = 0, corresponding to ¢ = — . We arrive at the correct result by first
supposing the vessel of finite breadth, so that there are points at v = —a, u = —,
u="b, u = a, for each of which e/ — 1 = — &, and then making b vanish.
‘We have, therefore,
dv ¢ 9 1+ \/(1 - 762)
dw ,\/(Q(f’ ~ \/( - ) + \/(L )
and
d ‘ S
= w e V= @) = (L V= @) (1 =),

* «The Contracted Vein,” ¢ Phil. Mag.,” Dec. 1876.
+ ¢Mém, de PAcad.’ 1766, Paris. I owe this reference to the kindness of Lord RaviEteH.
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Between v = o and v = 1 we have

dy 1 B _ S
Y o W= @)+ L=+ (=) L+ VT = @),

therefore the length of the pipe is

o 1 VA
+vi=ad) | oo —s =L ve e+ - V=), 5 L
Now
1 d, . - 1
= \/(pp» g [sm G (p = asech) = R (1 —a?
1,/ (1 —p%) d,
T = ) ),

an elliptic integral which will be brought to the standard form below.
Therefore the length of the pipe is

QLe oL logl—;—i;b 4 (1 4 0) L (a),
where
= /(1= )
From
w=1 to u=o
we have

® 7 1
[, Grdp= 40| 270 dp= (1 +1) M (@) (say)

where M is another elliptic integral to be reduced below.
Summing up, the breadth of jet is 7; that of the aperture is

7+ 2(1+ V1 — o) M (a),

so that the contraction ratio is

‘ T
m4+2(1+vV1-a)M()’
where the length of the pipe is

1+ =) S —a?) 1+ ¢(1

D41+ vI=@) L)

— log

MDCCCXC.—A. 3 G
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To reduce the elliptic integrals, we have

11 /(1 — ) Vo /(1® — 1) _
L@ ) d, f x/(l—“ dv rp=1
/e —1
- .[1 \‘/(7'2—1'1 — a*r?)’
Now (Cavrey, ¢ Elliptic Functions,” p. 315)
dr o da s 1—a _
V=1 1—a?) (1 =2 1 — k) where 1* = a? and % = 1 — (1 — o)
Thus

1 1 dex
L (a’) - {o[m - ]'il vV(QI4 =& 1 —ka?)

= I, (k, o* — 1) — F, (%),

where II and F are the third and first elliptic integrals. And

(=Y g V=)
M= [ GOt A= s

~(=o) j‘z‘/(lﬂ;h—aw R v

= (1= )P0 + 5B (@)

a?

where F is the second elliptic integral.
Suppose now the length of the pipe is small, so that @ is nearly unity.
We have

VAL St )
L(a)= d,
(N) J \/( ]0 —_ 0(/‘) .p
If we put p®= =, 2pdp = dx, we may put the factor p in the integral equal to

unity, and so get
V({1 —x)
L (a) jaza\/(ﬂ" —_ dg) d
= ir (1 —a?).

So that the length of pipe becomes

= CLI + 1\) (1 — a?) to the first order;
/
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while the aperture becomes
— 1 — a2
k=n+2(14+41 a)[( \1og\/<1
=n+4+24+2/(1—a)
to the first order, and the breadth of jet is ¢ = =.

: >+1]

So that
4 T+ 4 2
P i) (LT
and
¢ ar 2
e m [y 4 !
ET ow+ <1 7r+2\/]' 0&),
therefore i B
¢ m 1 4 7r+2}_
T w42 a4+ 2 m+4 %)

which is the approximate expression required.

Example 1V.—Flow from an aperture in a pipe in which the water is at rest.

By considering the symmetry of the motion this can be reduced to the case of flow
from a rectangular vessel in which the aperture extends from the bottom up, and the
bottom is continued into a horizontal plane, as in the figure.

The w diagram consists of two doubly infinite straight lines, = 0, ¥ = =, as
before.
But if in the » plane we make u = — oo correspond to ¢ =co, the arrangement
of points is not the same as before and the notation must be altered.
We take, then, « = 0 for the edge of the aperture, u = 1 the right angle of the
vessel, and then put = a for ¢ = —o0,
We then have ,
dw 1
% = U —a

and the arrangement of points on ¢ = 0 is as in the figure.

free rigid rigid ‘ rigid

= u='0 1,b=7r;0=u v=0. u.zl
3¢ 2
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The only singular point for dz/dw is at w = 0, and, therefore, from Problem IL (c),

&= <¢E£:1>*

du” w-—a

dz 1 <\/zo + 1>%

Along the free stream line

dz _ 1 <p+'1+2¢\/(_p)>-;~

dp ™ p—ua p—1
where p lies between 0 and — .
TIf
dy _ .
= tan ¢
we have
ptl_
o1 cos 2y
W (=p
o1 = sin 24
p = — cot*y
Therefore
dx _ cos™r cosec®
dyr— 7 cott + a
dy _ _ cosyrcosec’yr
Ay~ 7 cott + a
If we put cos ¥ = \ in the first we get
A 1
x= —2 [ d\

1—=NMa+ L —-an "

_ 2[ an a “’ an
S E Y 1—2a)a+ @ —a)n’

1—2A v a
— 2
1+A

A
tan~! —

1
1—-2&\/(1—0&) \/w\/(l—a)—;—c’

= 2 log

and, in the second, putting
sing = p
we have

— p
y—zfl—(l——a)pﬂ’

_ 1 1—y/A—a)p
=T 0@ B i au

-+ .
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Hence when ¢ = } , t.e., at the edge of the aperture

1 A 1+\/(1—a)
=1 =a) lgl—\/(l—a)

-

therefore the ratio of the jet to the aperture is

¢ m
B 1 1+ /(1—a)
Tt = STy =a)
The velocity at ¢ = — « is
<1 + «/a) ’
therefore the width of the vessel is
_ o (Ltae
a=w(120)"

therefore

e

From which we obtain

14+ 4/a 1
= ) H
2 S+l
1—y/a 1
2 @
et
therefore )
— ) c d 1_
1 /¢ d —2_<;Z+;>+
h=c 1+zw<3+2)10g77z*‘ ’
(248 -1
or

L N de].
lc_-c[l —l—w(c + d)log ,’_c]
This is for the vessel considered. For the pipe

k—c[] +1 <2d+2d>log2;lfz:|~ |
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Case IL—Impact of a stream against a plane.

A stream of given breadth impinges at a given angle against a plane.

The impinging stream is bounded by the stream lines ¢y = 0, = =.

The stream line which branches at the point B on the plane is ¢ = .

The diagram in the w plane consists of two infinite straight lines with a semi-
infinite one between them, as in the. figure. ’

v=r
v=u
\// =0 ~
In transforming to the u plane we suppose that ¢ = — co corresponds to v =+ «,

and that v = — 1, w = 1 are the extremities of the plane.

We must then take v = @, an unknown constant for the point B, where the stream
line ¢y = = divides, and observe that o < 1 > — 1.

We then have '

@ _ U —a
du T (w—1) (w+ 1)
where
14+ ¢ 1
1 . H
— 7A 3 g —m j
therefore

A=~—~1 and a=?———-1.
T

Along g = 0 we have, therefore, the following arrangement of points :—-

free rigid rigid free

p=—x Yv=0 w=—1 v =u um= u=1 = p=—c0.
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The only singular point of dz/diw is at u = a.

Hence
dz 1—-m&+\/(1—-ca2)\/(1—202)
w U —a
and, therefore,
' dz __ _l1—ou + /(1 — /(1 —u?)
du (w —1) (u + 1)
1 —au

=12 ‘I" \/(1 - ag) \/(1

When v = 4 o, we have

¢+¢

= —a—14/(1 —a?.

Therefore, if 8 be the inclination of the stream to the plane, we have

1 — 2
tanﬂ:‘—/LT—fQ or cos = a.
Since we have before found
2w
a="—1,
mw

this gives
w7 cos 0= 2w — m

This equation merely expresses that the momentum parallel to the plane -is

unaltered by impact.
Along the stream line ¢ = = we have

d:c 1—ap 1
olp T -1 l
= —“)¢<p 1)’ f
therefore
1
w = log (p* — 1)+%logp+ + A

;alog(p—1)+A
y=4/(1—a log (p+ /P — 1’) + 7 —w.
where p lies between + 1 and o ; and for ¢ = 0 we have

dv 1—ap dy
dp 102 -1 dp

o — \/(1 —-Cbg)j@}‘_—_—ﬁ:
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therefore

1 , 1~ : ,
w= "5 log = (1 4p) — " log (L —p) + A

y=+/(1—=a)log (VPP —1—p)+ =

where p lies between — 1 and — oo.

If we pﬁtp = —1 in the first and p=— L in the second, we get for ¢ = 7

cos 0 cos @
6 .0 h
9c1=(1+a)logcos§-—(1—a)logs1n—2——alogcosﬂ+A '
r
y1=_\/(1—a2)logcot—12—<g—0>-l—w—‘m-. _JI
and for y = 0
. 0 4 ;)
w2=(1+a)logs1n§—-—(1—-a,) logcosé—-—oalogcos€+A |
>
yzz\/(l—-az)logcot%<g—0>+w |

where in both cases 6 lies between 0 and L 7. When § = L 7 in both we get

X — k= A — As
h—Yp=7—2w
T+ (m—2%) a
s ==,

therefore
A—A =

and the equations of the bounding stream lines are now completely determined.

Case IIL—Flow of « broad stream past a plane wall in which there 1s an aperture.

Let BC be the aperture in a plane wall ABCD, and let the stream flow from left to
right.

The left boundary of the issuing jet will be the continuation of the stream line AB.
The right boundary will be one branch of a stream line which divides on the plane
CD at some point E.
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The diagram in the w plane will then consist of one infinite straight line and one
semi-infinite, as in the figure.

V=

¥ =0

We suppose = 0, y = = to be the bounding stream lines. In transforming to
the u plane we take the point y = 0, ¢ = — o tobew = — w0; y =0, ¢ = = to
be u = a, and then use the two arbitrary constants at our disposal by making the
edges of the aperture to be u = — b, u = b, and the branch point of yy = = to be
u=194a, where 1 +a > b >a.

We then have

and, remembering that the bounding stream lines are yy = 0, = m, we obtain A =1,
so that '

dv _uw—a—1

du = uw—a

There is only one singular point for dz/dw, viz., v =+ 1, and at this point
a/m — 1 =0, so that no factor v — & — 1 appears in dz/du.
The arrangement of points on ¢ = 0 is as in the figure

rigid free rigid
1 1 1
v=0 u=—2>o u=a v=m u== u=qa+1 V=7
and hence

% _(a+Du—8+ (0 + 1P =8 /(=1
dw b —a — 1) ’

so that

& _ @t o8+ @t P =P = 1)
du b(u — a) '

When v = -4 o, we have
dz _a+1+4/@+IP—0

dw b

and, therefore, the velocity of the stream is

b
. (@a+ 1)+ (a+ 1P =6
MDCCCXC.—A. 3 H
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When u = a, that is at a great distance along the jet,

& _a+l) P+ i@ PP SF =)

dw b

so that the inclination of the jet to the wall is ultimately

lbg—-a(a+1)’

cos™
b

the final breadth of the jet being .
There appear to be two constants here, whereas there ought only to be one.
The explanation is that we have not yet expressed that the two parts of the
boundary are in the same plane. This will give a relation between o and b.
Between v = — b and v = o we have '
de _l@+Dp—P
p b p—a
dy @+ 1P =8 @=p)
dp b pP—a

(o= = s e o —2)

Now

and

dp
j(zo — a)/(8* — p*)

dr 1
where p —a = — -,

- _fV(bg—az)r2+ Jar — 1
dr

=-| «/(V—————y(__g_— |
= \/(62 2)log[\/(b —-o&)’r—i—\/a)2 +\/(bz a2)7'2+2ar—-1],

_ 1 B — ap + VE= DT =P
== @ =) 8 - '

b

Thus along ¢ = 0, measuring from the edge A, we have

a(a+1) lo e=p
o+ b

x—mA-—

«/(_cim o P+ VB =) (P —p)
y_.yA-_:WZ.)———[— (0 — ) log T

+asint, S — a4 \/(bz_pg)].
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In like manner between u = ¢ and % = b on ¢ = 7, we have

ac—-wB::a_Z (p b)+a(a+1)——1)210g2b,:z’
Vie+ 1P =0 « | B —ap 4+ (0° — o) (B — p°
y — Yy = ﬂb_)___[ W (0* — a?) log ap (p(—a);l)( %)

— o&sin‘lzgo + a;l + /(b? —p“’)]
To find @, — wgand y, — y5 we must put p = @ — e and p = a + e respectively in

the above, and then decrease e indefinitely.
If we then remember that, in passing the point p = @, # + 7y increases by

R R RV CE iy AV Rl

we get
1) —? b— P EEITE v )
o=y =2 (a4 1)+ 2L R og I T T 0 — o)
and
PP 3y L AT IR

~ In the case we are considering 5 = ¥,, and, therefore,

B—ale+1l)=ay/{aF1F =0,
or

b= (a4 1°—1,

(@4 1) —=0*=1
a(a+1)— = —a.

so that

Using these equalities, we now get for the breadth of the aperture

X —-wA...2(a+1)+ lgb{_a—}-vr—\-/—z—a

where b/(a + 2) is the velocity of the stream, « the breadth of the jet, and cos™(a/b)
the inclination of the jet to the plane.

To get rid of the special units let v, be the velocity of the stream, v, of the jet, &
the breadth of the aperture, ¢ that of the jet.
Then
7 b
'v; “a+2’
S H 2
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therefore
v, 9_ v . a
v)  (a+2¢ a+2
So that
20,?
o = 0E — 2 )
2 1
and
240,
b ) ’IJ 2 /])‘é )
2 1
therefore

b= 2y (vy + vy)
V? — v,?

@+

21y (vy — vy)
—a+b=—"1
+ 1,7 — 1y®
Hence
k s ST R PO T \/ v’ — v’
—r = 2 - 1- +;log“+wf —‘722———9

2 Y9 ="
and the inclination of the jet to the plane is

-
cos™! 1.

Yy
An interesting element not yet calculated is the distance of the branching of the
stream line ¢y = 7 from the edge of the aperture.
This distance is

et (a + 1) p =0 4+ V(p* = )
= L

etlfg+1 a 1 1 20 1
_L [ b —-I;]B‘:&_l-Z{p+a_p_a}J(ps_b2)j|dp’
where we have used the relation between ¢ and b to simplify the expression,

a+1 1 1 5 719\
= [y Bl (p— ) + } V(P = 1)+ Lo (o + V=)

+ \/g‘—‘ sin~? {bb(ﬁp—‘a%”

v+ 1 1 a a+ 2
=2 (a—l—l-—b)-{—%log(b-a)+z+zlog .

b
\/bZa <sin‘1 a Z7_'> -

b 2
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Therefore, in terms of v,/v, and ¢, this distance is [ where

l v 4+ v, + v v, —v v 20 Vet — v, » o
) 1Y% Uy 1y llog iy 9 . Ulgin=12 7).
v, vy + v, v, :

¢ V0, vy + v, Vg 2

For example, let the stream have half the velocity of the issuing jet, so that
v; =49, Then the jet makes an angle of 60° with the plane, and its breadth is 1 &
approximately, while [ is about } .

Case IV.—Jet from a pipe along which liquid is flowing.

The liquid is flowing along a pipe bounded by the plane walls AC, DE, and there is
an aperture AB in the former.

The left boundary of the jet is ¢ = 0, the right boundary is a stream line ¢ = =,
which branches at a point C on BC, and DE is ¢ = =.

The w diagram is as in the figure, consisting of two infinite lines, = 0, ¢ = m,
with a semi-infinite line ¥ = = between them.

In transforming to the u plane, we suppose that ¢ = — o corresponds to
= — o, and that ¥ = — 1, u = + 1 are the edges of the aperture.

The constants of the transformation are then determined, and we take u = a for
the branch point, u = b for the jet at an infinite distance, v = ¢ for ¢ = oo in the pipe.

Then

dw w—
=Ry 2SO
where
! b—a
-—Ab— =
_Ao-a,ﬂ:m‘_‘w,
b—e¢
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and therefore
A=—1
w_b—ea
T b—c
m — & C— O
o == b—c¢

The arrangement of points on ¢ = 0 is as in the figure

rigid free free rigid rigid
1 1 y .

v=0 u=—1 ¥v=0 u=b V=w u=1 u=a u:ni V==

and from Problem II. (a) we have

dz _ au—1+4,/(e®*—=1) 4/(u? —1)

dw U —a
so that
dz __ au—1+4 /(@ —=1) /(1)
duw ™ (w—10b) (u—c) '
Hence, in the pipe, the velocity at ¢ = — o is
1

a_l_\/(“_l):a’_\/(a’g—l);

and at ¢ = o is
c—a

ac —1 +4/(a® —1)/(¢—1)

The breadth of the pipe is, therefore,

>ac—-1+\/(a9—1)\/(02—1)
¢—a

77(06~|-\/a2——1)=(7r—-m
Now

e—a
T — =T
¢ —b

B

therefore

(c =) (o + \/@_:T)=ac~1+\/(a2~l) V(1)

This is the relation between a, b, and ¢. To find the size of the aperture we must
integrate between w = — 1 and » = 1. ‘Within these limits we have

de 1 —ap _1l—ab 1 +ac—1 1
dp = (b=p)le—p)  e=bb—p  o—boc—p
dy _ _ 9 VA=) /@@ —1) 1 —ab  ac—1
dp Vi@ 1)(b~20>(c—10)— ¢—b ‘/1“P2[b—p+c—p]'
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The former gives

_ 1 —ab b—op ac — 1 c—p
rom=— Ty e T o 8

between p = — 1 and p = b,

and
_aeb—=1, p—>b ac—1 c=p
L= =" logl—b— c—b 1Ogc—l

between p = b and p = 1.

Also in passing the point w = b, « changes by

VS VALY
c— b

therefore, putting p =b — ein x — x,, p =b + e in & — x5, and proceeding to the
limit, we get as the breadth of the aperture,

1—ab. 14D ac—1, o+1 (@ =1) (1 — )
gty lg g+ c—b ‘

The direction of the jet makes an angle

with the bounding planes. The breadth of the jet is

a—2b
c—1b

T

To sum up: Let d be the breadth of the pipe, & of the aperture, [ of the jet. Let,

further, v, be the velocity at ¢ = — o, v, that at ¢ == o, v; that of the jet.
Vs __ 9 _
7)1..-00+\/(a 1 T ¢ )
n_ o=t
e TR IR AR O
and therefore
v, __c—2b
v, —v, a—0b (3)
d_ %
P I IR O
E_ o—b [l—ab, 1+4b  ac—1 14 J@ =1 /(1 — ) "
z_w(a—b){c—bl"gl—b"'c-blog—1+e+” c—b } - ()
with
(c—=b)(at+ V¥ —=1)=ac—1+ /(a®*—=1)/(c*=1) . . . (6)
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The equation (6) may be written

(c =)= (ac = 1)+ /(@ = ) /(& = 1).
Now
(c—af=(wc—1P¢— (= 1)(*=1),
therefore

(0-—0&)%’—_ (ac — 1“)-— V(@ —=1) /(= 1);
3

and, by addition and subtraction,

From (1)
r
—1(% Y
* ? <’U1 + Us)
2 ) =1(B_ "%
\/(Ob 1) TR 1 ”3)
Therefore
e I SO SO NI O T A BT A
[”2 Vs Uy ”3] R (”2 T ”3) <”1 + "’3) 2
or,
' 1
¢ (v, = 1) (v5® — vyg) = § (v — 0 vy + § (v — "’1”2)2;;;
so that
1+e — [(v) = v) v3 + (v5* — vyvy) P
—1+e¢ [— (v, — vg) vy + (v5® — vyy)]?
| — (5 — v9)* (w3 + v7)?
(v + v,)? (vs _:.7)02 ’
And
ac—1 _ 4 (v, v\ vy
a—b " *\v, " wg)v,—w,"
Also
(c—-a)%:c— b from (2),
therefore

b=1 ol 0?0 o) 4 (0 — o)
vy . ° vgUs (vy* — vy0y)

(0® + vywy) (0 — vywy) — (v — V)%,
vy (v — vyoy)

— 1
— 2 )
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so that
14+b=1 (0% + vy + 20005) (0 — vyvy) — (v — vy)%0?
R vgvg (v5* — v1vy) ’
and

1—b=1 ugry — v)° — vywy) (v — vywy) + (v, — vy)%wy?
® vy (v — vyvy)

These may be reduced to the form

1 +b_' 1 (v + v)* . 2?’3_"’1—”2’
? 12 — vy, vy

l_b_l(vs—"’]) 203 + v + vy
2 02 — vy, Vg

Further,
4—b=1 (%0, — ;%) (v5° — vyv,) + (¥, — v)? v v1
VWV (v5* — vy0y)
oy (=)
= 5, ., <>
2 0y (v — vyvy)
1 —ab= % {4v*0,9, — (0 + 2°) (0® + 00} {8 — 910} + (0° + %) (v — vp)*v? ,

0109057 (v5° - V10y)

(v, + ) (v® — ”12)2
0105% (v — vyv,)

Il

1
4

Whence, finally,

1—ab_ v+ v,
a—b g

1486 (m4v) 20— —o,
1—0" (v,—v)® 205+ 0, + 0,

V@ =DVA=8) I )

c — b 1;3
So that we get for k/I
@77.____:1”1""”2]0 (5 + v1)? 205 — v, — 2,
! * s (5 — 1) 205 4+ v + vy
+ vg® + v, (v — vy) (v5 + v;)
v3 (v, — ) (vg + vy) (vg — vy)
4v.2 — (v, + v,)?] %
g {EE A

MDCCCXC.—A. 31
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An interesting special case is the flow from an aperture in the side of a rectangular
vessel, of which the bottom is at a considerable distance from the aperture.

PHILOSOPHICAL
TRANSACTIONS

_; |
NI
olm
=
= O
= O
=w

OF

For this case v, = 0, and, therefore,

4 __ v
I/

b
vy

expressing the equality of inflow and outflow.
So that

k P vy + \2 20, —w v, Vo + ¥ i v,2] %
Zﬂ?}qllog<s 1) . 3 1+_§10g3 1+24{4_L}

Vg Vg — U, 20 + v, Vg — v,

Il

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

OF

vy v/ S vg— Vg vy + v,

or

k d N, d+1, 1. 2d—1 =
oy —— [ — - L 1 =
z"—<z+d>1°gd—z+2dl°g2d+z+2

which is the simplest expression for this case.
The angle the jet makes with the bounding wall is

cos_ll——ab
a—0b
or
v, 4w
cos~11 ‘q) ?

in the general case, while in the particular case it is simply

11 %
5

cos™

St

<?.)_1.+ 3)_3> logw_l_%'fllog 2!73—711 +g{4 _ ?f}%’

<4_
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Partr 1L

We will now go on to consider problems in which the region of (z,y) is not simply
connected, and consequently ScCHWARZ’s transformation does not apply.

First consider the area outside a closed polygon.

We may state the problem electrically thus:—

ProsrLeEm III.

To find the potential due to a polygonal prismatic conductor at a given potential
which we may take to be zero, the field at infinity being at an infinite potential.

Let ¢ be the potential, ¢ the lines of force, and let ¢ increase by 27 in going round
the polygon.

Then the area in the o plane is a rectangle bounded by ¢y =0,y =0, ¢ = —1,
p=10

A, A,
— %

\,’r—_—:O.

The conditions which the transformation function V satisfy are

' av
(@ =
(0) V finite and continuous at all points within a finite distance in the rectangle.
(¢) 'V periodic in ¢ so that

= 0 over yy = 0.

V(¢+20) =V ()
(d) V infinite at points A, ... along ¢ = 0.
We can determine V from these specifications by means of W. THoMsON’S method
of images. For if we repeat the points A, ... at equal distances 2/ along ¥ = 0, and

make V the potential of these pomts the conditions will clearly be satisfied.
Hence
+ .
V=AS3, log II {(¢ — ¢, — 20l)* 4 ¢*}",
and
ad

z +®
v AH,.E,, fw — ¢, — 2nl}

= BII, {sin (w— ¢,) %} 5
312
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and exactly as in the treatment of ScEWARZ'S formula we have m = a,/7 — 1, where
o, 1s the exterior angle of the polygon corresponding to ¢,.

So that, finally,*

dz . ] el =1
e = BH{SIH (w — (f)r) '2‘2}

As an example, take the case of a rectangle.
The four singular points may be taken to be

(]S:—‘O(/, 4):“, (]S:l—CL, (l):l-l—a,’

and we have, taking for simplicity I = } =,

%:A\/— sin (w — a) sin (w + a) cos (w — @) cos (w + a),

=1 A /(sin® 2a — sin® 2w).
Hence :
z=1%A f V/(sin® 2a¢ — sin® 2w) dw + B,

and z is an elliptic integral of w.

ProBrEM 1V.

Suppose now there are two polygonal prismatic conductors, one at potential
Y = — k, the other at ¥ = %, and at first (A) suppose that oune of the conductors is
within the other.

Let ¢ increase by 27 in going round either polygon.

The area in the w plane is now a finite rectangle bounded by ¢ = —1I, ¢ =1,

=—Fk

In order to satisfy the condition dV/OZII} =0 over y = — k and ¢ =% we must
have a double system of images of the singular points, viz., at

o+ 2ml, Y 4 4nk,
¢+ 2ml, Yo+ (2n + 1) 2k

% Mr. BriLy has already given this formula (* Messenger of Math., August, 1889), and I only insert
it here for the sake of completeness. -

Nore.—April 29. Since the above paper was read, Mr. BriuL has given the next transformation in
the same journal.
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Thus each singular point gives a factor

T Ho{w — wy — 2ml — Ank}™ {w — wy, — 2ml — (2n 4 1) 2k3"™,
or, what is the same thing,
| ® [ (w — wo) " H [a (w — wy)]",

A A

where ®, H are JAcoBT’s functions so indicated, and, therefore,

SOCIETY

OF

A A

SOCIETY

OF

d
=T {8 o (w — we)] H [a (w — wy) 3™,
where
al=K
2ak = K’
K, K’ being the complete elliptic integrals usually so denoted.
If ) be the internal angle of the figure corresponding to w,, we have, as before,
M=%—1
aT b
so that, finally,
% =10, [ (w — w) ] H @ — w) ]}

(B) Suppose now that one conductor is outside the other, and that the potential at
infinity is zero, that of the conductors being — % and 4+ k. 'We suppose equal and
opposite quantities of electricity on the conductors 2] being the cyclic constant, as
before.

The terms corresponding to angles of the polygon will be the same as in (A). -

But there is now in addition a singular point in the field which we proceed to
determine.

At a great distance from the prisms the potential will be the same as for two line
distributions at the centres of mass, say at z = a, 2 = — a.

So that

w=M log —o_ _ o Me
24+a z

ultimately, and

dw w?

P

@ =M™ =g
or

ds _ 2Ma

dw ™ w? ’
and, therefore, there is a point of order — 2 at the pomt in the w rectangle
corresponding to the potential at infinity.
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Let this point be ¢, ¥, Then we have

& T,{0[aw — w,)]H[a(w—w)]}*" 1
dw~  {Ofa(w — wy)]H[a(w— wy)]}*

as the general expression for the potential of two polygonal prismatic conductors
exterior to each other.

Hollow Vortices.

In conclusion I shall show how the methods of this paper may be applied to find
the form of hollow vortices.

Inside a vessel bounded by plane walls, let there be a hollow vortex in steady
motion.

Let ¢ = 0 be the free steam line of the vortex, ¥ = 2k the rigid boundary.

In the w plane the area is bounded by Y =0,y =2k ¢ = —1, ¢ =1,2] being the

circulation round the vortex.

The function V satisfies the following conditions :—

(@.) V = 0 over ¢y = 0, if the velocity along the free steam line be unity.

(b.) dV/dyyp = 0 over ¢ = 2k.

(c.) V is periodic with respect to ¢, so that V (¢ + 2I) = V (¢).

These conditions are to be satisfied by taking equal singular points at distances 21
along ¥ = 2k, and then continually reflecting these points in the two planes s = 0,
Y = 2k, but in reflecting in ¢ = 0 the image is of opposite sign to the object.

Corresponding, then, to a point M at (¢, 2k) we have positive images at

b + 2ml, 2k 4 2m . 4k

and negative images at

bo + 2ml, — 2k + 2m . 4k
Therefore, corresponding to this point M, we have a factor

HYa (w — ¢y — 2ik) i dz
OMg (w — py — 2ik) dw

H

where
M:Kl
dak =K’ j
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nd

It is quite clear that all but the simplest cases will be of quite unmanageable
omplexity.
One of the very simplest cases may be taken as an example.

vxample.—Hollow vortex between two parallel planes.

Here for the two singular points & = 0.

If for simplicity we put o = 1, and, therefore, 44 = K, the singular points are at
=10, ¢ =K.

Hence

This integrates at once, giving

y — 1K/
2= " log =K

© en(w — 33K
= C"log tn (w— 1K) 4 C”
The equation to the vortex is, therefore,

2= (" log tn (¢ — LiK') + C”".


http://rsta.royalsocietypublishing.org/

